Förderung von Kälte- und Klimaanlagen 2019
nach der Kälte-Klima-Richtlinie des BMU vom 19. Dezember 2018
Merkblatt Fachtechnik (Ausgabe April 2019)
Vorwort ... 4

1. Neuerungen .. 5

2. Fördertatbestände und –voraussetzungen für stationäre Kälteerzeuger 6

 2.1. Leistungsgrenzen, Einzel- oder Verbundanlage, Redundanzanlagen 7

 2.1.1. Nicht verbundene Kälteerzeuger an einem Standort .. 7

 2.1.2. Verbundene Kälteerzeuger an einem Standort ... 8

 2.1.3. Kälteerzeuger in Kombinationen mit TK-Stufe .. 9

 2.1.4. Redundanzanlage (Back-Up System) ... 9

 2.2. Technische Fördervoraussetzungen für stationäre Anlagen ... 9

 2.2.1. Kompressionskälte- oder -klimaanlagen ... 9

 2.2.2. Ab- und Adsorptionsanlagen .. 10

 2.2.3. Wärmeübertrager von Kälteanlagen ... 11

 2.3. Komponenten und Systeme, thermische Speicher .. 12

 2.3.1. Kombinationen von Kälteerzeugern mit thermischen Speichern............................. 13

 2.3.2. Freikühler .. 13

 2.4. Kombinationen von Kälteerzeugern mit Komponenten und Systemen 14

3. Fördertatbestände und –voraussetzungen für Fahrzeug-Klimaanlagen 15

4. Parameter zur Bestimmung des Förderbetrages und der Leistungsgrenzen bei stationären Anlagen .. 16

 4.1. Flüssigkeitskühlsätze ... 16

 4.2. Waterloop-Systeme ... 16

 4.3. Klimaanlagen mit adiabater Verdunstungskühlung .. 17

 4.4. Supermarktkälteanlagen mit R-744 ... 17

 4.5. Gewerbekälteanlagen mit R-744 .. 19

 4.6. Turboverdichter mit R-718 ... 19

 4.7. Ab- und Adsorptionsanlagen ... 19

 4.8. Vakuumeiserzeuger (Turboverdichter) ... 20

5. Parameter zur Bestimmung des Förderbetrages bei sonstigen Fördertatbeständen 20

 5.1. Tiefkühlstufe mit R-744 .. 20

 5.2. Luftkühler .. 21
5.3. Rückkühler ... 21
5.4. Thermische Speicher .. 21
5.5. Kühlsolekreisläufe (Kühlsoleleitungen) 22
5.6. Pauschale für Ausführungsplanung 22
5.7. Kombinationsbonus .. 22

6. Parameter zur Bestimmung der Förderhöhe bei Fahrzeug-Klimaanlagen 23

7. Fördersummenberechnung ... 23
7.1. Stationäre Anlagen ... 23
7.1.1. Koeffizienten A, B und C zur Berechnung der Förderhöhe 24
7.1.2. Ausführungsplanung .. 25
7.1.3. Kombinationsbonus .. 26
7.2. Fahrzeug-Klimaanlagen ... 26

8. Einzureichende technische Unterlagen 26
8.1. Antragsunterlagen .. 26
8.2. Verwendungsnachweis .. 27

9. Monitoring .. 28
9.1. Stationäre Kälteanlagen .. 28
9.2. Fahrzeug-Klimaanlagen .. 29

10. Glossar .. 30
10.1. Verwendete Begriffe ... 30
10.2. Abkürzungen .. 38
10.2.1. Bezeichnungen .. 38
10.2.2. Technische Parameter .. 38
10.2.3. Indizes ... 39

Impressum ... 40
Vorwort

Komplexe Gesamtsysteme, die bei der Integration thermischer Speichersysteme und Systemen zur Bereitstellung von Antriebsenergie (→) auf der Basis Erneuerbarer Energien (→) in die eigentliche Kälte- und Klimatechnik entstehen, können ebenfalls gefördert werden.

Die anvisierten Maßnahmen sollen außerdem die Marktanteile der ausgewählten Technologien erhöhen und deren Wirtschaftlichkeit durch sinkende Produktionskosten verbessern.

Dieses Merkblatt definiert Details zu den Fördervoraussetzungen und Auslegungsbedingungen für stationäre Anlagen (→), mobile Fahrzeuganlagen (→), Sorptionsanlagen (→), Verdunstungskühlanlagen (→, Wärmepumpen (→), Freikühler (→), Systeme und Komponenten (→), Planungspauschalen (→) und die Kombination mit Regenerativenergiesystemen (→) als Antriebsenergie (→).

Im Abschnitt Monitoring (→) werden die Details zur Erhebung von Betriebsdaten festgelegt.

Ein Glossar (→) erläutert und definiert die in dieser Richtlinie verwendeten Termini für die Umsetzung nach den seitens BAFA angewandten Kriterien der Verwaltungspraxis und Fachtechnik.
1. Neuerungen

Im Unterschied zur Vorgängerkälterichtlinie werden nur noch Kälte- und Klimaanlagen gefördert, die mit nicht-halogenierten Kältemitteln betrieben werden.

Weitere Neuerungen sind:

Förderung weiterer Kälteerzeuger

Förderung von Komponenten und Systemen

Neu ist auch der modulare Aufbau der Förderung. Neben dem eigentlichen Kälteerzeuger können zusätzlich Komponenten und Systeme gefördert werden z.B. Luftkühler, Rückkühler, eigenständige Wärmepumpen zur Abwärmenutzung, Kühlsolekreisläufe aber auch thermische Speicher.

Planungspauschale für indirekte Systeme

Ebenfalls neu ist die Förderung der Ausführungsplanung für stationäre indirekte Systeme (Flüssigkeitskühlsätze) und von Kühlsolekreisläufen. Für die fachkundige Ausführungsplanung indirekter Systeme wird eine Planungspauschale für Systeme mit zwei bis zehn Luftkühlern bzw. für die Integration eines oder mehrerer Kälte- bzw. Wärmespeicher gewährt.

Kombinationsbonus

Für die Kombination einer geförderten Kälte- oder Klimaanlage mit einem Regenerativenergiesystem zur Bereitstellung von elektrischer Antriebsenergie wird für den anfallenden Zusatzaufwand (z.B. Verkabelung, Verrohrung, MSR) ein Kombinationsbonus in Abhängigkeit der bereitgestellten elektrischen Spitzenleistung gewährt.

Für die Bereitstellung von thermischer Regenerativenergie (→) für den Betrieb einer Sorptionsanlage (→) wird ein Kombinationsbonus (→) in Form einer Pauschale gewährt.

Fahrzeugklimaanlagen

Auch Fahrzeugklimaanlagen mit dem Kältemittel CO₂ werden jetzt gefördert.
2. Fördertatbestände und -voraussetzungen für stationäre Kälteerzeuger

Gefördert werden stationäre Kälte- und Klimaanlagen, die mit nicht-halogenierten Kältemitteln betrieben werden, wenn diese neu errichtet bzw. neu installiert werden oder nur die Kälteerzeugungseinheit neu erstellt wird, jedoch das Kühlmittelsystem (Wasser-, Sole-, Luftverteilsystem) bestehen bleibt.

Ohne Austausch der Kälteerzeugungseinheit kann der Austausch einzelner Komponenten wie z.B. Kühlmöbel, Tiefkühlstufe mit CO₂, Rückkühler, Luftkühler, Kühlmittelsystem (Wasser-, Sole- Luftverteilsystem) nicht gefördert werden.

Die Förderung von stationären Kältezeugern umfasst im Einzelnen folgende Typen:

a) Flüssigkeitskühlsätze mit Kältemitteln der Sicherheitsklasse A3 (gering toxisch, hoch entzündlich): Propan (R-290), Propen (R-1270), Isobutan (R-600a) gemäß Tabelle 1a der Kälterichtlinie

 Normalkühlung sowie Klima- und Prozesskälteanlagen
 - Kompakt-Anlagen, flüssigkeitsgekühlt, ein Kältemittelkreislauf, mit höchstens 80 g Kältemittel pro kW Kälteleistung
 - kombinierte Kompakt-Anlagen, flüssigkeitsgekühlt, mehrere Kältemittelkreisläufe, mit höchstens 80 g Kältemittel pro kW Kälteleistung

 inkl. **flüssigkeitsgekühlte steckerverfertige Systeme¹**
 - Anlagen, flüssigkeitsgekühlt
 - Anlagen, luftgekühlt

b) Flüssigkeitskühlsätze mit Kältemitteln der Sicherheitsklasse B2L (erhöht toxisch, schwer entzündbar): z.B. Ammoniak (R-717), Gemisch aus Ammoniak und Dimethylether (R-723) gemäß Tabelle 1b der Kälterichtlinie

 Normalkühlung sowie Klima- und Prozesskälteanlagen
 - Anlagen, flüssigkeitsgekühlt
 - Anlagen, luftgekühlt

c) Andere Kälteerzeuger gemäß Tabelle 1c der Kälterichtlinie

 Adiabate Verdunstungskühlanlagen

Supermarkt- und Gewerbekälteanlagen mit R-744
Turboverdichter mit R-718
Ab- und Adsorptionsanlagen
Vakuumeiserzeuger (Turboverdichter) mit Nebenantrieben sowie Wärmeübertrager und Pumpe

2.1. Leistungsgrenzen, Einzel- oder Verbundanlage, Redundanzanlagen

2.1.1. Nicht verbundene Kälteerzeuger an einem Standort

Zwei oder mehrere Kälteerzeuger sind nicht verbunden, wenn sich zwar am selben Standort befinden aber keine physikalisch-, technisch-, funktionalen Schnittstellen auf Kältemittel-, Wasser-, Sole- oder Luftseite haben.

Nicht verbundene Kälteerzeuger sind förderfähig, wenn jeder Kälteerzeuger die spezifischen Fördervoraussetzungen erfüllt. Die Leistungen müssen jeweils innerhalb der in der Kälterichtlinie in Tab. 1a, 1b, 1c angegebenen Leistungsgrenzen (→) liegen. Für jeden Kälteerzeuger ist ein separater Antrag zu stellen. Die Kälteerzeuger können „gleich“ sein oder auch „ungleich“, siehe folgende Beispiele:

- Kälteerzeuger A
 - z.B. Flüssigkeitskühlsatz mit R-290
- Kälteerzeuger B
 - z.B. Flüssigkeitskühlsatz mit R-290
- Kälteerzeuger C
 - z.B. Flüssigkeitskühlsatz mit R-290

Nicht verbunden, „gleiche“ Kälteerzeuger

- Kälteerzeuger A
 - z.B. Flüssigkeitskühlsatz mit R-290
- Kälteerzeuger B
 - z.B. Flüssigkeitskühlsatz mit R-290
- Kälteerzeuger C
 - Absorptionsanlage

Nicht verbunden, „ungleiche“ Kälteerzeuger
2.1.2. Verbundene Kälteerzeuger an einem Standort

Zwei oder mehrere Kälteerzeuger (→) sind verbunden, wenn funktionale Schnittstellen auf Kältemittel-, Wasser-, Sole- oder Luftseite (z.B. gemeinsamer Kühlraum) vorliegen.

Verbundene Kälteerzeuger, die innerhalb eines Jahres beantragt werden, werden hinsichtlich der Fördergrenzen der Kälte- bzw. Antriebsleistung wie eine Maßnahme behandelt, d. h. wenn sie zusammen die Fördergrenzen überschreiten, werden beide Einzelmaßnahmen abgelehnt. Liegt zwischen zwei Förderanträgen mehr als ein Jahr werden beide Förderanträge als getrennte Einzelmaßnahmen behandelt. In diesem Fall müssen nur Grenzen der De-minimis-Beihilfen eingehalten werden.

Steckerfertige Kühlmöbel oder Geräte, die ihre Wärme nicht an die Umgebungsluft sondern an einen gemeinsamen Kühlwasserkreislauf abgeben (Waterloop-System), gelten als verbundene Anlage. Es ist ein gemeinsamer Antrag für alle halbsteckerfertigen Geräte (Kälteleistung ist zu addieren) zu stellen.
2.1.3. Kälteerzeuger in Kombinationen mit TK-Stufe

Eine Tiefkühlstufe (TK-Stufe) mit R-744 ist nur in Kombination mit einem Kälteerzeuger (→) nach Tab. 1a, 1b oder 1c der Kälterichtlinie förderfähig. Der Kälteerzeuger und die TK-Stufe müssen die spezifischen Fördervoraussetzungen erfüllen. Die Leistung des Kälteerzeugers muss innerhalb der in der Kälterichtlinie in Tab. 1a, 1b oder 1c angegebenen Leistungsgrenzen (→) liegen; Die Leistung der TK-Stufe (Kälteleistung) muss zwischen 10 und 120 kW liegen. Diese Kombination ist als Einheit zu betrachten und in einem Antrag einzureichen.

2.1.4. Redundanzanlage (Back-Up System)

Redundanzanlagen (→) (Back-Up Systeme) (→) sind Anlagen, die im Normalbetrieb nicht zur Abdeckung des Kältebedarfs (→) benötigt werden. Sie werden nur zugeschaltet, wenn z.B. die Hauptanlage ausfällt bzw. nicht im Betrieb ist. Redundanzanlagen (→) sind auch dann nicht förderfähig, wenn sie die spezifischen Fördervoraussetzungen erfüllen. Ihre Leistung wird auf die Gesamtleistungsgrenze (→) nicht angerechnet.

2.2. Technische Fördervoraussetzungen für stationäre Anlagen

2.2.1. Kompressionskälte- oder -klimaanlagen

Stationäre Kompressionskälte- oder -klimaanlagen sind förderfähig, wenn folgende Bedingungen erfüllt sind:

- mindestens ein Verdichter pro Verbund (oder ein einzelner Verdichter) verfügt über eine Leistungsregelung mit einem Regelbereich von 40 bis 100 Prozent, es sei denn, es wird ein Nachweis über eine geringe energetische Auswirkung dieser Leistungsregelung geführt; Bei Flüssigkeitskühlsätzen mit Kaltwasser-/Kaltsole-Speicher kann auf den FU verzichtet werden, wenn die Kälteleistung mindestens 4-stufig geregelt werden kann. Für Flüssigkeitskühlsätzen mit Kaltwasser-/Kaltsole-Speicher bis 5 kW elektrischer Verdichterleistung ist eine mindestens 3-stufige Leistungsregelung ausreichend.
- Abtauvorrichtungen müssen über eine Bedarfsregelung verfügen;

Verkaufskühlmöbel für Molkereiprodukte und Wurstwaren im Lebensmittelhandel müssen über eine Nachtabdeckung verfügen, alle anderen Verkaufskühlmöbel müssen vollständig mit Glas- oder Kunststofftüren oder -deckeln ausgerüstet sein; die Beleuchtung muss mit LED oder Plasma-Leuchtmitteln erfolgen, und die Lüfter müssen mit EC-Motoren angetrieben werden.

Kälteanlagen müssen mit einer Regelung betrieben werden, die die Verflüssigungstemperatur an die Umgebungstemperatur anpasst, es sei denn, es wird ein Nachweis über eine geringe energetische Auswirkung dieser Leistungsregelung geführt;

alle eingesetzten Komponenten müssen mindestens die Voraussetzungen der Öko-Design-Richtlinie in der jeweils gültigen Fassung erfüllen;

Pumpen zur Förderung von Stoffströmen in Kühlmittelkreisläufen müssen drehzahlgeregt sein;

Durchführung eines hydraulischen Abgleiches.

Waterloop-Systeme sind nur förderfähig, wenn

das durch die Kondensationswärme aufgeheizte Wasser zumindest zeitweise zur Heizung oder Warmwasserbereitung genutzt wird. Dabei ist es unerheblich, ob die Wärme direkt oder als Wärmequelle einer Wärmepumpe genutzt wird.

die Kältemittelfüllmenge eines einzelnen Kreislaufes 150 g nicht überschreitet. Aufgrund des geringeren Gefahrenpotenzials darf die Kältemittelfüllmenge in diesem Fall größer als die für kombinierte Kompaktanlagen geforderten 80 g/kW Kälteleistung sein.

2.2.2. Ab- und Adsorptionsanlagen

Sorptionsanlagen (Ab- und Adsorptionsanlagen (→)) müssen über eine bereits vorhandene oder gleichzeitig neu erstellte Wärmequelle betrieben werden.

Mögliche Wärmequellen können sein:

- BHKW
- Fern- oder Nahwärme
- Sekundär(ab)wärmequelle, z.B. Industrieabwärme
- Solarthermieanlage
- Geothermie

Der Leistungsbedarf aller elektrischen Zusatzverbraucher darf 8% der bereitgestellten Kälteleistung nicht übersteigen. Zu den elektrischen Zusatzverbrauchern zählen:

- Interne Verbraucher, z.B. Steuerung (MSR), interne Pumpen
- Ventilatoren des Rückkühlers

Erfolgt über eine geeignete Steuerung eine teillastabhängige Drehzahlanpassung von Ventilatoren, ist die elektrische Leistungsaufnahme der drehzahlvariablen Ventilatoren mit dem Faktor 0,1 zu multiplizieren.

2.2.3. Wärmeübertrager von Kälteanlagen

Um die Verluste in den Wärmeübertragern zu minimieren, sind folgende Temperaturen einzuhalten (gemäß VDMA-Einheitsblatt 24247-8):

bei Flüssigkeit (z. B. Wasser) als Kälteträgermedium

Verdampfer (Flüssigkeitskühler) hier beispielhaft Plattenwärmeübertrager:

\[
\Delta T_K = t_{KF2}^t - t_{o2}^{''t} \quad \text{mit} \quad \Delta T_K \approx 4 \, K \\
\Delta T_{KF} = t_{KF1} - t_{KF2} \quad \text{mit} \quad \Delta T_{KF} \approx 6 \, K
\]

Verflüssiger:

\[
\Delta T_W = t_{1}^{''t} - t_{WF2}^{''t} \quad \text{mit} \quad \Delta T_W \approx 2 \, K
\]

bei Luft als Übertragungsmedium

Verdampfer (Luftkühler):

\[
DT_1 = t_{L1} - t_{o2}^{''t} \quad \text{mit} \quad DT_1 \approx 10 \, K \\
\]

Verflüssiger trockene Arbeitsweise, Umgebungsluft:

\[
DT_1 = t_{1}^{''t} - t_{L1} \quad \text{mit} \quad DT_1 \approx 10 \, K
\]

Verflüssiger feuchte Arbeitsweise, Umgebungsluft:

\[
DT_1 = t_{c1}^{''t} - t_{f1} \quad \text{mit} \quad DT_1 \approx 6 \, K
\]
Verdampfer:

Verflüssiger:

Erläuterung:

\(t_{o2}'' \): Temperatur am Verdampfungsende (Taupunkttemperatur bei Verdampfungsdruck)
\(t_{L1} \): Lufteintrittstemperatur
\(t_{f1} \): Feuchtkugeltemperatur der Luft am Eintritt
\(t_{c1}'' \): Verflüssigungstemperatur (Taupunkttemperatur bei Verflüssigungsdruck)
\(t_{KF1} \): Fluideintrittstemperatur (Flüssigkeit oder Luft) auf der kalten Seite
\(t_{KF2} \): Fluidaustrittstemperatur (Flüssigkeit oder Luft)
\(t_{WF2} \): Fluidaustrittstemperatur (Flüssigkeit oder Luft) auf der warmen Seite

2.3. Komponenten und Systeme, thermische Speicher

Neben dem Kälteerzeuger können weitere Komponenten einer stationären Kälte- oder Klimaanlage gefördert werden. Förderfähig sind:

- Tiefkühlstufe mit R-744
- Luftkühler für Kälteanlagen (NK und TK)
- Luftkühler für AC- und Prozesskühlanlagen
- Adiabate Rückkühler (Hybridkühler)
• Rückkühler für flüssigkeitsgekühlte Anlagen
• Eigenständige Wärmepumpen mit nicht-halogeniertem Kältemittel zur Abwärmenutzung der Kälteanlage(n)
• Kühlmöbel sowie Luftkühler für Supermarkt-Kälteanlagen, flüssigkeitsgekühlte (semi-) steckerfertige Kühlmöbel oder Geräte (aber keine steckerfertigen Geräte)
• Kühlssolekreisläufe
• Komponenten, Systeme für Freikühlbetrieb (Ventile, Leitungen, Reglerintegration etc.)

sowie folgende thermische Speicher
• Warmwasser-Schichtenspeicher
• Kaltwasserspeicher
• Eis-Speicher: Betongehäuse mit Wärmeübertrager
• Latentwärmespeicher-Systeme: Behälter mit LWS (Kapsel)

Die Leistung von Luftkühlern (→) und Rückkühlern (→) muss für jede einzelne Komponente innerhalb der in der Richtlinie spezifizierten Bereiche liegen.
Jede Komponente muss im Antragsformular mit ihrer jeweiligen Leistung einzeln erfasst werden.

2.3.1. Kombinationen von Kälteerzeugern mit thermischen Speichern

Falls Komponenten oder thermische Speicher mit unterschiedlichen Kälteerzeugern verbunden sind, kann die Förderung für diese Kombination nur einmal gewährt werden.

2.3.2. Freikühler

Ein Freikühler ist nur förderfähig, wenn er in der Lage ist, den Kälteleistungsbedarf vollständig zu decken, wenn die Außenlufttemperatur T_{AUL} mindestens 3 K niedriger ist als die Nutztemperatur T_{Nutz}. Die Vorgabe von 3K Temperaturdifferenz wird in der Praxis erfahrungsgemäß nur mit adiabaten bzw. hybriden Rückkühlern erreicht.

Ist ein zweiter in Reihe geschalteter Wärmeübertrager erforderlich, kann die Temperaturdifferenz von 6K (zweimal 3K) angesetzt werden.
2.4. Kombinationen von Kälteerzeugern mit Komponenten und Systemen

<table>
<thead>
<tr>
<th>Anlagen, Komponenten und Systeme</th>
<th>Flüssigkeitskühlörsätze</th>
<th>Andere Kälteerzeuger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponenten und Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefkühlstufe mit R-744</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Luftkühler für Kälteanlagen</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Luftkühler für AC- und Prozesse</td>
<td>N</td>
<td>Ja</td>
</tr>
<tr>
<td>Adiabate Rückkühler (Hybridkühler)</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Rückkühler</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Wärmpumpe zur Abwärmenutzung der</td>
<td>N</td>
<td>Ja</td>
</tr>
<tr>
<td>Kälteanlage(n)</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Kühlmöbel</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Kühlsolkreisläufe</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Komponenten, Systeme für Freikühlbetrieb</td>
<td>N</td>
<td>Ja</td>
</tr>
<tr>
<td>Speichersysteme und ohne Latentwärmespeicher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmwasserspeicher</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Kaltwasserspeicher</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Eis-Speicher, Betongehäuse mit</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Wärmeübertrager</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Latentwärmespeicher-Systeme</td>
<td>Ja</td>
<td>N</td>
</tr>
<tr>
<td>Regenerativenergiesysteme, elektrisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Windenergie</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>BHKW mit Biomasse (gASF. flüssig, fest)</td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Regenerativenergiesysteme, thermisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solarthermie</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Geothermie</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>BHKW mit Biomasse (gASF. flüssig, fest)</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

* In Einzelfällen förderfähig.
3. Fördertatbestände und –voraussetzungen für Fahrzeug-Klimaanlagen

Der Bus oder das Schienenfahrzeug darf ausschließlich im öffentlichen Personennahverkehr (ÖPNV), einschließlich des Schienenpersonennahverkehrs, im Schienenpersonenfernverkehr sowie im Linienfernverkehr und im Gelegenheitsverkehr im Sinne des Personenbeförderungsgesetzes eingesetzt und überwiegend auf dem Gebiet der Bundesrepublik Deutschland betrieben werden.

Für jeden Bus bzw. jeden Kälteteil ist ein separater Förderantrag zu stellen.

Bei einem Zug bestehend aus mehreren, fest miteinander verbundenen Waggons, die jeweils mit einer Klimaanlage ausgestattet sind, ist für jede Klimaanlage bzw. für jeden Kälteteil ein eigener Antrag zu stellen.

Für jeden Waggon bzw. Kältemittelkreislauf muss ein separater Antrag A1, A2 ... A5 gestellt werden, auch im Falle fest miteinander verbundener Waggons (z.B. ICE, S-Bahnen).
4. Parameter zur Bestimmung des Förderbetrages und der Leistungsgrenzen bei stationären Anlagen

Stationäre Kälteerzeuger sind nur dann förderfähig, wenn bestimmte, in der Kälterichtlinie genannte Leistungsgrenzen nicht unter- oder überschritten werden. Diese Leistungsgrenzen beziehen sich entweder auf die Kälteleistung oder auf die Antriebsleistung des/der Verdichter(s), die wie nachfolgend beschrieben zu berechnen sind. Dies gilt sinngemäß auch für die Bestimmung der Kälteleistung zur Berechnung des Förderbetrages.

4.1. Flüssigkeitskühlsätze

Bei der Berechnung der Kälteleistung von Flüssigkeitskühlsätzen, die in den Tabellen 1a und 1b der Kälterichtlinie genannt sind, sind zur Auslegung 50 Hz Netzfrequenz sowie die Vorgaben der Ökodesign-Richtlinie zugrunde zu legen, wie in der nachfolgenden Übersicht dargestellt:

<table>
<thead>
<tr>
<th>Luftgekühlte Anlagen</th>
<th>T Austritt (Sole)</th>
<th>T Eintritt (Luft, außen)</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkühlung (NK)*</td>
<td>-8 °C</td>
<td>+35 °C</td>
<td>ENTR Lot1 - VO (EU) 2015/1095</td>
</tr>
<tr>
<td>Klimatisierung und Prozesskühlung (AC)</td>
<td>+7 °C</td>
<td>+35 °C</td>
<td>ENER Lot21 - VO (EU) 2016/2281</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flüssigkeitsgekühlte Anlagen</th>
<th>T Austritt (Sole)</th>
<th>T Eintritt (Sole, Verflüssiger)</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkühlung (NK)*</td>
<td>-8 °C</td>
<td>+30 °C</td>
<td>ENTR Lot1 - VO (EU) 2015/1095</td>
</tr>
<tr>
<td>Klimatisierung und Prozesskühlung (AC)</td>
<td>+7 °C</td>
<td>+30 °C</td>
<td>ENER Lot21 - VO (EU) 2016/2281</td>
</tr>
</tbody>
</table>

*) Flüssigkeitskühlsätze mit Tiefkühlanwendungen sind wie Normalkühlanwendungen zu behandeln. Sollte eine Umrechnung auf die Betriebsbedingungen von NK-Flüssigkeitskühlsätzen (-8°C) nicht möglich sein, ist die bei der höchsten Temperatur noch bekannte Kälteleistung der Tiefkühlanlage anzusetzen.

4.2. Waterloop-Systeme

<table>
<thead>
<tr>
<th>Flüssigkeitsgekühlte steckerfertige Anlagen</th>
<th>T Kühlgut, Raum</th>
<th>T Eintritt (Sole, Wasser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkühlung (NK)*</td>
<td>+2 °C</td>
<td>+30 °C</td>
</tr>
</tbody>
</table>
4.3. Klimaanlagen mit adiabater Verdunstungskühlung

Bei der adiabaten Verdunstungskühlung im Sinne der Richtlinie handelt es sich um eine indirekte Kühlung. Dabei sind zwei Arten möglich:

2. Ein warmer Außenluftstrom wird mit flüssigem Wasser befeuchtet, das verdunstet ohne von außen Wärme aufzunehmen (adiabat) und kühlt dadurch den Außenluftstrom ab. In einem Wärmeübertrager (Rekuperator) wird wärmere Abluft mit dem o. g. Außenluftstrom gekühlt und einem Raum zugeführt (Umluftbetrieb, z.B. in Rechenzentren). Die Verdunstung wirkt damit indirekt auf die Zielgröße Zuluft.

Die Berechnung der Kälteleistung \(Q \) von adiabaten Verdunstungskühlanlagen nach Tab. 1c erfolgt bei einem Betriebszustand, der wie folgt definiert ist:

Variante 1:

<table>
<thead>
<tr>
<th>Zustand</th>
<th>(T_{AU}), °C</th>
<th>(\varphi)</th>
<th>(x_{AU})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenluft-Zustand</td>
<td>32</td>
<td>0,40</td>
<td>0,012</td>
</tr>
<tr>
<td>Abluft-Zustand</td>
<td>25</td>
<td>0,60</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Variante 2:

<table>
<thead>
<tr>
<th>Zustand</th>
<th>(T_{AB}), °C</th>
<th>(\varphi)</th>
<th>(x_{AB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abluft-Zustand</td>
<td>32</td>
<td>0,40</td>
<td>0,012</td>
</tr>
<tr>
<td>Außenluft-Zustand</td>
<td>32</td>
<td>0,40</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Die Berechnung ist nachvollziehbar darzulegen und kann auch mit Hilfe von Hersteller-Software durchgeführt werden.

Anlagen(-komponenten), die zur Rückkühlung von Kühlwasser verwendet werden, z.B. Hybridkühler, Kühltürme mit adiabater Kühlung, etc. sind keine adiabaten Verdunstungskühlanlagen im Sinne der Richtlinie.

4.4. Supermarktkälteanlagen mit R-744

Bei Supermarktkälteanlagen mit R-744 ist die förderfähige Gesamtkälteleistung das Produkt aus den laufenden Metern der Kühlmöbel und der spezifischen Kälteleistung von 0,6 kW/lfm (Tabelle 1d), d.h. unabhängig von der in den Datenblättern angegebenen Kälteleistung.

Bei der Kühlmöbellänge sind die realen Laufmeterlängen \(L \) anzugeben, wobei verschiedene Regalhöhen nicht berücksichtigt werden. Bei übereinander angeordneten Kühlmöbeln gilt die einfache Länge des längeren Möbels.
a) Kühlinsel, einseitiger Zugriff, NK/TK

\[
\begin{array}{c}
\text{L} \\
\end{array}
\]

\[L = \text{lange Seite des Kühlmöbels} \]
\[L_{\text{Gesamt}} = L \]

b) Kühlinsel, zweiseitiger Zugriff, NK/TK

\[
\begin{array}{c}
\text{L} \\
\end{array}
\]

\[L = \text{Lange Seite des Kühlmöbels} \]
\[L_{\text{Gesamt}} = 2 \times L \ (\text{Mindestbreite 1,2 m, sonst } L_{\text{Gesamt}} = L) \]

c) Zwei Kühlinseln, zweiseitiger Zugriff, NK/TK

\[
\begin{array}{c}
\text{L} \\
\end{array}
\]

\[L = \text{Lange Seite des Kühlmöbels} \]
\[L_{\text{Gesamt}} = 2 \times L \]

d) Zwei Kühlinseln, zweiseitiger Zugriff, mit Kopfstück, NK/TK

\[
\begin{array}{c}
\text{L}_1, \text{L}_2 \\
\end{array}
\]

\[L_1 = \text{Lange Seite des Kopfstück}s \]
\[L_2 = \text{Lange Seite des Kühlmöbels} \]
\[L_{\text{Gesamt}} = 2 \times L_2 + L_1 \]

e) Kühlräume

Kühlräume (NK/TK) und Vorbereitungsräume, Frühanlieferung, etc. (NK/TK): Jede Kühlstelle (Verdampfer/Sole) wird mit 2 laufenden Metern gerechnet.

f) Klimatisierung (AC)

Jede Kühlstelle (Luftkühler), zugehörig zum Kälteerzeuger, für den eine Förderung beantragt wurde, wird mit 2 laufenden Metern gerechnet.

g) Überdruckanlage

Die Kälteleistung der Überdruckanlage wird nicht als Kühlstelle gerechnet, sondern mit 1,0 laufenden Metern pro laufendem Meter Thekenlänge, für die die Überdruckanlage gebaut ist.
Waterloop-Systeme werden als kombinierte Kompaktanlagen gefördert. Die Kühlmöbellänge ist hier **nicht** der Parameter zur Bestimmung der Kälteleistung (siehe 4.2).

4.5. Gewerbekälteanlagen mit R-744

Kälteanlagen mit R-744, die nicht im Supermarkt eingesetzt sind, werden als Gewerbekälteanlagen eingestuft. Unter Gewerbekälteanlagen mit R-744 sind sowohl Direktverdampfungsanlagen als auch Flüssigkeitskühlsätze mit R-744 zu verstehen.

Die Bestimmung der Kälteleistung erfolgt nicht über die Kälteleistung der Verdampfer, sondern über die Kälteleistung der installierten Verdichter.

Die Kälteleistung des Verdichters ist grundsätzlich bei Netzfrequenz (50 Hertz) zu berechnen. Dies gilt auch für Verdichter, die mit einer Drehzahlregelung (Frequenzumrichter) ausgestattet sind. Bei zweistufigen Anlagen sind die Kälteleistungen der einzelnen Druckstufen jeweils getrennt zu ermitteln.

Bei Direktverdampfungsanlagen wird die Kälteleistung des TK-Kältekreislaufs bei \(t_o = -25^\circ C \) und \(t_c = -6^\circ C \) berechnet. Die Kälteleistung des NK-Kreislaufs wird bei \(t_o = -6^\circ C \) und \(36^\circ C \) am Austritt des Gaskühlers berechnet. Die Gesamtkälteleistung ergibt sich als Summe der Kälteleistungen der Verdichter von NK- und TK-Kreislauf. In der Kälteleistung des NK-Kreislaufs ist auch der Anteil der oberen Stufe für die Tiefkühlung enthalten.

Flüssigkeitskühlsätze (Soleanlagen) mit dem Kältemittel R-744 werden als Gewerbekälteanlagen mit R-744 beantragt. Die Kälteleistung wird nach den Auslegungsbedingungen gemäß Kapitel 4.1 berechnet.

4.6. Turboverdichter mit R-718

Die Kälteleistung wird bei folgenden Betriebsbedingungen berechnet:

- 28°C Kaltwasservorlauf- und 35°C Kühlwassereintrittstemperatur

4.7. Ab- und Adsorptionsanlagen

Zur Berechnung der Kälteleistung für Sorptionsanlagen werden folgende Eintrittstemperaturen in die Sorptionskältemaschine zugrunde gelegt:

- Kaltwasser: \(T = 15^\circ C \)
- Kühlwasser/Rückkühlung: \(T = 27^\circ C \)
- Heizmedium: \(T = 85^\circ C \)
4.8. Vakuumeiserzeuger (Turboverdichter)

Förderfähig sind Vakuumeiserzeuger, bei denen die Eiserzeugung ohne Umweg über ein anderes Kältemittel erfolgt (siehe Schaubild). Eiserzeuger zur Erzeugung von Eisbrei zur Speicherung sowie als Soleersatz für die indirekte Kühlung sind als Flüssigkeitskühlset zu beantragen.

Nicht förderfähig sind steckerfertige Eiserzeuger, wie beispielsweise Scherbeneiserzeuger.

5. Parameter zur Bestimmung des Förderbetrages bei sonstigen Fördertatbeständen

5.1. Tiefkühlstufe mit R-744

Die Kälteleistung des Verdichters ist grundsätzlich bei Netzfrequenz (50 Hertz) zu berechnen. Dies gilt auch für Verdichter, die mit einer Drehzahlregelung (Frequenzumrichter) ausgestattet sind.

Die Kälteleistung des TK-Kältekreislaufs wird bei $t_0 = -25^\circ C$ und $t_e = -6^\circ C$ berechnet und als Leistung der TK-Stufe festgelegt (gilt nicht für Supermarktkältelanlagen).
5.2. Luftkühler

5.3. Rückkühler

Die Bestimmung der Kondensationsleistung von adiabaten Rückkühlnern und Rückkühlnern für flüssigkeitsgekühlte Anlagen erfolgt nach den für die Bestimmung der Kälteleistung gültigen Auslegungsbedingungen (siehe Pkt 4.1). Sie muss nicht mit der Rückkühlleistung des Datenblattes des Rückkühlers übereinstimmen. Die Rückkühlleistung kann dem Datenblatt des Flüssigkeitskühlsatzes entnommen werden. Falls sie nicht angegeben ist, ist sie wie folgt zu berechnen:

\[\text{Rückkühl-(Kondensations-)leistung} = \text{Summe aus Kälte- und Antriebsleistung} \]

Sollten mehrere Rückkühler eingesetzt werden, ist die Rückkühlleistung entsprechend aufzuteilen.

Die Zuordnung der Rückkühler erfolgt folgendermaßen:

Adiabate Rückkühler (Hybridkühler)
- (Rohre aus Edelstahl, mit Wanne zum Auffangen des Wassers, vorwiegend Trockenbetrieb)

Rückkühler für flüssigkeitsgekühlte Anlagen:
- Trockenrückkühler
- Trockenrückkühler mit Besprühungssystem (keine Edelstahlausführung des Registers, Rohre aus Kupfer)
- Kühltürme (vorwiegend Nassbetrieb)

5.4. Thermische Speicher

Die Fördersumme wird auf Grundlage folgender Daten berechnet:

Wasserspeicher:
- Maximales Volumen des Wassers im Speicher lt. Datenblatt des Wasserspeichers

Eisspeicher:
- Die Speicherkapazität \(Q_s \) entspricht der maximalen Speicherkapazität \(Q_o \) lt. Datenblatt des Eisspeichers. Bei fehlender Angabe der Speicherkapazität im Datenblatt ist als Grundlage das maximale Volumen lt. Datenblatt zu verwenden. Die Speicherkapazität \(Q_o \) ist dann wie folgt zu berechnen:
 \[Q_o = 40 \, \text{kWh/m}^3 \]

Latentwärmespeicher (LWS, PCM: Phase Change Material) außer Eisspeicher):
- Die Speicherkapazität \(Q_s \) entspricht der maximalen Speicherkapazität \(Q_o \) lt. Datenblatt. Bei fehlender Angabe der Speicherkapazität im Datenblatt des Eisspeichers ist die Speicherkapazität \(Q_o \) wie folgt zu berechnen:
 \[Q_o = m_{sp} \cdot c_{p,sp} \]

Es können mehrere thermische Speicher auch der gleichen Art beantragt werden.
5.5. Kühlssolekreisläufe (Kühlssoleleitungen)

Unter Kühlssolekreisläufen sind folgende Leitungen zu verstehen:

- Kaltsoleleitungen (Kaltwasserleitungen) zwischen Kälteerzeuger und Pufferspeicher
- Kaltsoleleitungen (Kaltwasserleitungen) zwischen Pufferspeicher und Kühlstellen
- Kühlwasserleitungen zwischen Kälteerzeuger und Rückkühler
- Kühlwasserleitungen zwischen Kälteerzeuger und Pufferspeicher für Heizung oder Warmwasser (Wärmeverteilung ist nicht förderfähig)

Leitungen für Eisbrei sind ebenfalls förderfähig. Die Antragstellung und Berechnung des Förderbetrages erfolgt als Kühlssoleleitungen.

Kältemittelrohrleitungen werden nicht gefördert.

5.6. Pauschale für Ausführungsplanung

Mit der Planungspauschale wird die Auslegung und Berechnung von Rohrleitungen, Dämmung, Ventilen (Ventilgruppen), Ausgleichsbehältern, Steuerung und Regelung bei der Anbindung von Kühlstellen an förderfähige Flüssigkeitskühl säte (sog. indirekten Systemen), deren Kombination mit Wärme- und/oder Kältespeichern sowie die Durchführung eines hydraulischen Abgleichs des Gesamtsystems gefördert.

5.7. Kombinationsbonus

„Gleichzeitig“ bedeutet, dass Kälteerzeuger und Regenerativenergiesystemen innerhalb des Bewilligungszeitraums für die Kälte- oder Klimaanlage abgenommen werden müssen.

Förderfähig ist die Kombination einer

- förderfähigen Kompressionskälteanlage mit einer Photovoltaikanlage, einer Windenergieanlage oder einem mit Biomasse (gasförmig, flüssig, fest) betriebenen BHKW.
- förderfähigen Ab- und Adsorptionsanlagen mit einer thermischen Solarkollektoranlage, einer Anlage zur Nutzung von Erdwärme aus Geothermie oder einem mit Biomasse (gasförmig, flüssig, fest) betriebenen BHKW.
6. Parameter zur Bestimmung der Förderhöhe bei Fahrzeug-Klimaanlagen

Die Klimaanlage muss mit Kohlenstoffdioxid (CO\textsubscript{2}) als Kältemittel (R-744) betrieben werden und eine Kälteleistung Q_o von 5 bis 45 Kilowatt aufweisen.

7. Fördersummenberechnung

Der Gesamtförderbetrag ergibt sich aus den separat berechneten Teilfördersummen für

- Kälteerzeuger
- Komponenten und Systeme
- Thermische Speicher
- Planungspauschale
- Kombinationsbonus.

Die Förderung ist auf 150.000 Euro pro Maßnahme sowie auf maximal 50 % der förderfähigen Ausgaben begrenzt.

7.1. Stationäre Anlagen

Bei stationären Anlagen wird die Höhe der Förderung F in Euro nach der Formel:

$$F = (A \times X^B + C) \times X$$

berechnet, wobei X eine Variable ist, die für die Kälteleistung (kW) bzw. die Speicherkapazität (kWh) oder das Volumen (dm3) steht. A, B und C sind spezifische Koeffizienten, die von der Art des Kälteerzeugers bzw. der Komponente oder des Speichers abhängen.

Bei der Berechnung der Kälteleistung sind die im Merkblatt Fachtechnik definierten technischen Auslegungsbedingungen für Kälteerzeuger und Wärmeübertrager zu beachten.

Bei Kühlsolekreisläufen mit Verrohrung, Dämmung, Fittings und Sole berechnet sich die Förderung F nach der Formel:

$$F = A \times L \times D + B$$

wobei L und D Variablen sind, die für die Rohrlänge (m) und den Rohrdurchmesser (mm) stehen. A und B sind spezifische Koeffizienten.
7.1.1. Koeffizienten A, B und C zur Berechnung der Förderhöhe

Die folgende Tabelle zeigt Werte der Koeffizienten A, B und C zur Berechnung der Förderhöhe.

<table>
<thead>
<tr>
<th>Flüssigkeitskühlsätze: Kältemittel der Sicherheitsklasse A3: R-290, R-1270, R-600a, R-170</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Normalkühlung

Kompakt-Anlagen mit max. 100 g Kältemittel pro kW
Kälteleistung, flüssigkeitsgekühlt, ein Kältemittelkreislauf, mit höchstens 80 g Kältemittel pro kW Kälteleistung

| A | B | C |
| 2.946,23 | -0,7508 | -26,39 |

kombinierte Kompakt-Anlagen, flüssigkeitsgekühlt, mehrere Kältemittelkreisläufe, mit höchstens 80 g Kältemittel pro kW Kälteleistung

| A | B | C |
| 32.649,844 | -3,1859 | 192,49 |

Anlagen, flüssigkeitsgekühlt

| A | B | C |
| 1.394,48 | -0,3892 | -17,43 |

Anlagen, luftgekühlt

| A | B | C |
| 1.104,97 | -0,2964 | -66,21 |

Klima- und Prozesskälteanlagen

Kompakt-Anlagen, flüssigkeitsgekühlt, ein Kältemittelkreislauf, mit höchstens 80 g Kältemittel pro kW Kälteleistung

| A | B | C |
| 2.786,02 | -0,7437 | -24,94 |

kombinierte Kompakt-Anlagen, flüssigkeitsgekühlt, mehrere Kältemittelkreisläufe, mit höchstens 80 g Kältemittel pro kW Kälteleistung

| A | B | C |
| 4.896 | -0,8842 | 121,22 |

Anlagen, flüssigkeitsgekühlt

| A | B | C |
| 1.247,53 | -0,3892 | -14,53 |

Anlagen, luftgekühlt

| A | B | C |
| 1.373,43 | -0,4183 | -13,04 |

Flüssigkeitskühlsätze: Kältemittel der Sicherheitsklasse B2L: R-717, R-723

Normalkühlung

| A | B | C |
| 1.237,569 | -0,00004 | -1.237.073 |

Anlagen, luftgekühlt

| A | B | C |
| 1.048,41 | -0,0656 | -566,34 |

Klima- und Prozesskälteanlagen

Anlagen, flüssigkeitsgekühlt

| A | B | C |
| 9.247,30 | -0,8615 | 49,81 |

Anlagen, luftgekühlt

| A | B | C |
| 941,99 | -0,3591 | 6,10 |

Andere Kälteerzeuger

Adiabate Verdunstungskühlanlagen

| A | B | C |
| 3.567,45 | -1,0788 | 70,79 |

Supermarktkälteanlagen mit R-744

| A | B | C |
| 1.192,79 | -0,4270 | 58,61 |

Gewerbekälteanlagen mit R-744

| A | B | C |
| 1.192,79 | -0,4270 | 58,61 |

Turboverdichter mit R-718

| A | B | C |
| 100 | 0 | 0 |

Ab- und Adsorptionsanlagen

| A | B | C |
| 1.484,38 | -0,2682 | -74,31 |

Vakuumeiserzeuger (Turboverdichter) mit Nebenantrieben, Wärmeübertrager, Pumpe

| A | B | C |
| 9.669,6 | -0,6159 | 0,00 |
Förderung von Kälte- oder Klimaanlagen

Komponenten und Systeme

<table>
<thead>
<tr>
<th>Komponenten und Systeme</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiefkühlstufe mit R-744</td>
<td>781,69</td>
<td>-0,2153</td>
<td>-210,4</td>
</tr>
<tr>
<td>Luftkühler für Kälteanlagen</td>
<td>233,20</td>
<td>-1,0000</td>
<td>61,10</td>
</tr>
<tr>
<td>Luftkühler für AC- und Prozesskühlanlagen</td>
<td>421,63</td>
<td>-1,0000</td>
<td>23,32</td>
</tr>
<tr>
<td>Adiabate Rückkühler (Hybridkühler)</td>
<td>82.239,4</td>
<td>-1,5944</td>
<td>59,92</td>
</tr>
<tr>
<td>Rückkühler für flüssigkeitsgekühlte Anlagen</td>
<td>26.700,02</td>
<td>-3,4995</td>
<td>21,12</td>
</tr>
<tr>
<td>Wärmepumpe mit nicht-halogeniertem Kältemittel zur Abwärmenutzung</td>
<td>1.246,73</td>
<td>-0,5614</td>
<td>-1,21</td>
</tr>
<tr>
<td>Kühlsolekreisläufe</td>
<td>0,5465</td>
<td>7,60</td>
<td>-</td>
</tr>
</tbody>
</table>

Speicher

Wasserspeicher

<table>
<thead>
<tr>
<th>Wasserspeicher</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmwasser-Schichtenspeicher</td>
<td>520,64</td>
<td>-1,0034</td>
<td>0,38</td>
</tr>
<tr>
<td>Kaltwasserspeicher</td>
<td>10,90</td>
<td>-0,4512</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Eis-Speicher

<table>
<thead>
<tr>
<th>Eis-Speicher</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betongehäuse mit Wärmeübertrager</td>
<td>4.237,78</td>
<td>-1,0326</td>
<td>2,26</td>
</tr>
<tr>
<td>Latentwärmespeicher (LWS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behälter mit LWS (Kapsel) bei (t_{sp} <) -3°C</td>
<td>6.257,9</td>
<td>-1,4906</td>
<td>21,34</td>
</tr>
</tbody>
</table>

Kühlstellen (Kühlmöbel, Verdampfer oder Luftkühler) für Supermarkt-Kälteanlagen werden mit 400 € pro lfm Kühlmöbel gefördert, siehe Kapitel 4.3.

Bei Freikühlern werden die für den Freikühlbetrieb erforderlichen Komponenten und Systeme (Ventile, Leitungen, Reglerintegration etc.) gefördert. Der Zuschuss erhöht sich um 5 % der Förderung für den jeweiligen Kälteerzeuger und Rückkühler.

7.1.2. Ausführungsplanung

Die Ausführungsplanung wird mit folgenden Pauschalen gefördert:

- 500 Euro pro Luftkühler, mindestens 1.000 Euro, maximal 5.000 Euro,
- 1.000 Euro für die Integration eines oder mehrerer Wärmespeicher,
- 1.000 Euro für die Integration eines oder mehrerer Kältespeicher.

Vorplanungen, die auch zur Antragstellung notwendig sind, werden nicht gefördert. Vorplanung und Ausführungsplanung sind getrennt zu beauftragen. Die förderfähige Ausführungsplanung darf erst beauftragt werden, wenn der Bewilligungsbescheid für die Förderung vorliegt.
7.1.3. Kombinationsbonus

Für die Installation einer neuen Anlage zur Erzeugung regenerativer Wärme wird einmalig ein Pauschalbetrag in Höhe von 1.000 Euro gewährt. Der Kombinationsbonus wird nur einmal gewährt, entweder für die Bereitstellung von regenerativer elektrischer Energie oder regenerativer Wärme. Das gilt auch für eine Anlagenkombination bestehend aus einer Kompressionskältetechnik, einer Sorptionsanlage und einem (mit Biomasse betriebenen) BHKW. Ein zweifacher Kombinationsbonus für die gleichzeitige Bereitstellung von regenerativer elektrischer Energie (für die Kompressionskältetechnik) und regenerativer Wärme (für die Sorptionsanlage) ist nicht möglich.

7.2. Fahrzeug-Klimaanlagen

Bei Fahrzeug-Klimaanlagen wird die Höhe der Förderung F in Euro nach der Formel:

\[F = (A * X^B + C) * X \]

berechnet, wobei X die Variable für die Kälteleistung bezeichnet. A, B und C sind Koeffizienten, die folgende Werte haben: A = 472,5; B = −1; C = 135.

Die Förderung ist auf 150.000 Euro pro Maßnahme sowie auf maximal 50 % der förderfähigen Ausgaben begrenzt. Bei Fahrzeug-Klimaanlagen ist als Maßnahme die Summe aller in einem Förderantrag zusammengefassten Fahrzeuge zu verstehen.

8. Einzureichende technische Unterlagen

8.1. Antragsunterlagen

Anträge auf Förderung von Maßnahmen an einer Kälte- oder Klimaanlage können nur elektronisch über das vom BAFA bereitgestellte elektronische Formulargestellt werden. Bei Antragstellung sind dem BAFA folgende technische Unterlagen einzureichen / zusammen mit dem Förderantrag hochzuladen:

- Grafische Darstellung (Funktionschema) aus dem der Zusammenhang aus Hauptkomponenten, Verrohrung, Hydraulik und Zusatzsystemen (Speicher, Regenerativenergiesysteme) hervorgeht
- Dokumentation der Kältetechnik inkl. Funktionsbeschreibung mit
detallierter Beschreibung der zu fördernden Maßnahme(n) und der geplanten Anlage
- Berechnung der Kälteleistung \(Q_o \) nach BAFA-Vorgabe
- Datenblätter bzw. Auszug des Leistungsverzeichnisses der Hauptkomponenten
- Für die Hauptkomponenten der Kältetechnik wie Verdichter, Verdampfer und
Verflüssiger/Gaskühler sind die Hersteller- und Leistungsangaben erforderlich bzw. entsprechend Datenblätter beizufügen.

Bei Sorptionsklimaanlagen sind zusätzlich erforderlich:
- Datenblatt bzw. Auszug des Leistungsverzeichnisses des Sorptionskälteaggregats
- Wärmeleistung, die für den Antrieb der Sorptionsanlage zur Verfügung steht
- Aufzählung der elektrischen Zusatzverbraucher, z.B. interne Pumpen, Rückkühlventilatoren mit der jeweiligen elektrischen Nennleistung

8.2. Verwendungsnachweis

Der Verwendungsnachweis ist dem BAFA innerhalb von drei Monaten nach der Abnahme der Kälte- oder Klimaanlage, spätestens jedoch innerhalb von drei Monaten nach Ablauf des Bewilligungszeitraums bzw. der Abnahmefrist vorzulegen (Einreichungsfrist).

In begründeten Fällen kann vor Ablauf o.g. Termine ein Antrag auf Verlängerung gestellt werden. Verwendungsnachweise können nur elektronisch über das vom BAFA bereitgestellte elektronische Verwendungsnachweisportal eingereicht werden. Das Portal wird im Laufe des ersten Halbjahres 2019 zur Verfügung gestellt. Im Verwendungsnachweis weist der Antragsteller nach, dass er die Maßnahme wie bewilligt durchgeführt und die Auflagen erfüllt hat. Das BAFA wird an dieser Stelle mitteilen, welche Dokumente beizufügen sind.
9. Monitoring

9.1. Stationäre Kälteanlagen

Bei stationären Kälteanlagen werden folgende Informationen erhoben:

Für Kompressionskälteanlagen:
- Zählnummer, Zählerstand und Ablesedatum der Elektroenergie
- zusätzlich bei Flüssigkeitskühlssätzen (indirekte Systeme) Zählnummer, Zählerstand und Ablesedatum des Wärmemengenzählers für die bereitgestellte Kälteenergie in kWh
- Art sowie Erst- und Nachfüllmenge des eingesetzten Kältemittels
- Optional: klimatisierte Fläche, Volumen des Kühlraums, Betriebszeit pro Tag, Jahreslaufzeit
- Bei Supermarktanlagen: Displayfläche der Verkaufskühlmöbel, Öffnungszeiten pro Woche
- Nachweis über durchgeführte Wartungsarbeiten.

Für Sorptionskälteanlagen:
- Zählnummer, Zählerstand und Ablesedatum des Wärmemengenzählers für die bereitgestellte Kälteenergie in kWh
- Betriebszeit pro Tag, Jahreslaufzeit
- Optional: eingesetzte Wärmemenge, Stromverbrauch der Nebenaggregate

Für adiabate Verdunstungsanlagen:
- Betriebszeit pro Tag, Jahreslaufzeit
- Optional: Verbrauch an Elektroenergie, Wasserverbrauch
- Nachweis über durchgeführte Wartungsarbeiten

Alle Anlagen:
- Angabe und Beschreibung über an der geförderten Anlage durchgeführte Veränderungen
Die Erhebung der Betriebsdaten setzt voraus, dass geförderte Anlagen mit Elektroenergierzähler und Wärme- (Kälte-) mengenzähler ausgestattet sind. Die nachfolgende Tabelle zeigt die zugehörigen Anforderungen:

<table>
<thead>
<tr>
<th></th>
<th>Notwendig für</th>
<th>Ausnahmen</th>
<th>Notwendig ab</th>
<th>Fernauslesbar ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektroenergie-zähler</td>
<td>alle Anlagen</td>
<td>Verdunstungskühlanlagen, Ab-, Adsorptionsanlagen</td>
<td>5 kW elektrische Leistungsaufnahme</td>
<td>15 kW elektrische Leistungsaufnahme</td>
</tr>
<tr>
<td>Wärme- (Kälte-) mengenzähler</td>
<td>Flüssigkeitskühlsätze (indirekte Anlagen mit Wärme oder Kälteträger)</td>
<td>Keine Messung im Kältekreislauf (Waterloop-Systeme)</td>
<td>20 kW Kälteleistung</td>
<td>50 kW Kälteleistung</td>
</tr>
</tbody>
</table>

9.2. Fahrzeug-Klimaanlagen

Spezifikation hinsichtlich der Erfassung und Aufzeichnung der wichtigsten Messgrößen von Betriebsdaten von Fahrzeug-Klimaanlagen wird das BAFA noch festlegen.
10. Glossar

Ausgewählte Begriffe der Kälte- und Klimatechnik wie sie in der verwaltungsmäßigen Anwendung und Umsetzung der Förderrichtlinie angewendet werden.

10.1. Verwendete Begriffe

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Beschreibung, Links, Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abtauvorrichtung / Abtauheizung</td>
<td>Apparat zur Enteisung von Wärmeübertragern (Luftkühler, Verdampfer) und zugehörige Abflussleitungen.</td>
</tr>
</tbody>
</table>
| Abwärme, Abwärmenutzung | Nutzen von Abwärme für einen anderen Prozess, z. B.
- zum Heizen mit Abwärme der Kälteanlage
- als Heizquelle für eine AKM |
| Anlage | Einheit von Bauteilen und Geräten, die einem bestimmten Zweck dient z. B. Kälteanlage, Wärmepumpe
Unterschieden werden:
- Stationäre (ortsfeste) Anlagen, diese werden im laufenden Betrieb nicht bewegt
z.B. Kälteanlage, bzw. Klimaanlage für ein Gebäude
- Anlage, die an wechselnde Einsatzorte bewegt werden, und dort ortsfest betrieben werden, werden nach dieser Kategorisierung zu den ortsfesten Anlagen gezählt, dazu gehören auch bewegliche Raumklimageräte, die z. B. zum Entfeuchten und Kühlen eingesetzt werden
- mobile Anlagen werden in Fahrzeugen betrieben (Fahrzeugklimaanlagen, Transportkälteanlagen), z. B. Busklimaanlage. |
| Anlagentyp | Anlagentyp ist bezogen auf den beantragten Kälteerzeuger nach Tab. 1a, 1b, 1c der Richtlinie. |
| Antriebsleistung P in kW | Elektrisch, mechanisch oder thermisch zugeführte Antriebenergie pro Zeiteinheit. |
| Antriebsleistung im Nennbetriebszustand | Antriebsleistung der Maschine im Auslegungszustand, (maßgebend für die Einhaltung der Leistungsgrenzen nach Richtlinie). |
| Auslegungsdrehzahl | Die für den Betrieb notwendige, maximale Drehzahl (Auslegungsdrehzahl) kann kleiner sein, als die maximale Drehzahl der Maschine; z. B. kleinere Drehzahl durch Frequenzumrichter (elektronischer Drehzahlregler). |
| Booster-Anlage | Kälteanlage, die mindestens zwei verschiedene Verdampfungstemperaturen erzeugt und dazu mindestens 2
<table>
<thead>
<tr>
<th>Begriff</th>
<th>Beschreibung, Links, Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdichter</td>
<td>(Vorverdichter, Booster verdichter, Niederdruckverdichter) einsetzt. Es handelt sich dabei um eine zweistufige Kälteanlage mit nur einem Kreislauf.</td>
</tr>
<tr>
<td>Chiller</td>
<td>\rightarrow Flüssigkeitskühlsatz</td>
</tr>
<tr>
<td>Direkte Systeme</td>
<td>\rightarrow: Systeme</td>
</tr>
</tbody>
</table>
| Expansionsventil | Drosselorgan im Kältemittelkreislauf, mit dem der Differenzdruck zwischen Hochdruck und Verdampfungsdruck aufrechterhalten wird, regelt die Überhitzung. Unterschieden werden:
 - thermostatische Expansionsventile
 - elektronisches Expansionsventile |
| Flüssigkeitskühlsatz | Fabrikmäßig hergestelltes Gerät mit dem Flüssigkeit gekühlt wird, bestehend aus:
 Verdampfer, Verdichter(n), eingebaute oder getrennt betriebene Verflüssiger.
 - wassergekühlt: Abgabe der Abwärme an Wasser.
 - luftgekühlt: Abgabe der Abwärme an Luft.
 Wenn Wasser als Flüssigkeit gekühlt wird, auch als Wasserkühlsatz, Kaltwassersatz oder Chiller bezeichnet. |
| Freikühler | Rückkühler (Wärmeübertrager), in dem Flüssigkeit Wärme abgibt, ohne dass zuvor eine (mechanische oder thermische) Kälteerzeugung (z.B. Verdichter) erforderlich war, ggf. mit Befeuchtung der Luft, um deren Eintrittstemperatur zu senken. |
| Frequenzumrichter | Gerät zur Drehzahlregelung von Elektromotoren. |
| **Gesamtsystemeffizienz (Optimierung)** | Integration von Effizienztechnologien, Speichertechnologien und Regenerativenergiesystemen mit dem Ziel, insgesamt den Primärenergieverbrauch und die Treibhausgasemissionen zu minimieren. |
| **hydraulischer Abgleich** | Verfahren zur Einstellung von optimalem Volumenstrom und optimaler Temperatur von Flüssigkeiten (z. B. Sole), die Energieströme transportieren. |
| **indirekte Verdampfung** | Wärmeübertragungssystem, bei dem das zu kühlende Medium nicht in direktem Wärmekontakt mit dem Verdampfer steht, sondern der Wärmetransport über ein Zwischenmedium (Kälteträger) erfolgt.
Beispiel: Kälteverteilung über Kaltwasser zur Raumkühlung |
| **indirekte Verdunstungskühlung** | Ein warmer Abluftstrom wird mit Wasser befeuchtet, das verdunstet ohne von außen Wärme aufzunehmen (adiabat) und kühlt dadurch den Luftstrom ab. In einem Wärmeübertrager (Rekuperator) wird wärmere Außenluft mit dem o. g. Luftstrom gekühlt und einem Raum zugeführt. Die Verdunstung wirkt damit indirekt auf die Zielgröße Zuluft.
(Alternative: Die Außenluft wird durch Befeuchtung direkt gekühlt.) |
| **Kohlenstoffdioxid** | Kältemittel, auch: Kohlendioxid, CO₂, R-744. |
| **Kaltwassersatz** | → Flüssigkeitskühlsatz zur Kühlung von Wasser. |
| **Kälteanlage** | Geschlossener Kältemittelkreislauf ggf. inkl. Sekundärkreislauf,
- auch Kälteerzeugungseinheit oder Kälteerzeuger. |
| **Kälteerzeugung** | Wärmeabfuhr an eine Wärmesenke (Umwgebung), die wärmer ist als die Nutztemperatur (Kühltemperatur). |
| **Kälteenergie**
Q₀ (kWh) | Gespeicherte oder in einem Zeitraum bereitgestellte Energie auf niedrigem Temperaturniveau. |
| **Kältemittel**
(→) Sicherheitsklassen | Fluid, das im Kältekreislauf zirkuliert. Es nimmt bei niedriger Temperatur und niedrigem Druck Wärme auf und gibt bei höherer Temperatur und höherem Druck Wärme ab.
Es erfolgt dabei eine Aggregatzustandsänderung des Fluids bei der Wärmeaufnahme (Verdampfung) und Wärmeabgabe (Verflüssigung).
(auch Arbeitsstoff)
Beispiele für förderfähige (nicht-halogenierte) Kältemittel:
R-600a: Isobutan
R-290: Propan
R-1270: Propen
R-717: Ammoniak, NH₃
R-718: Wasser, H₂O |
| R-723: Gemisch: Ammoniak + Dimethylether
R-744: Kohlenstoffdioxid, CO₂ |
| Kälte(mittel)kreislauf | Geschlossenes System in dem Kältemittel transportiert wird, das thermische Energie (Wärme) bei einer tiefen Temperatur aufnimmt und bei einer höheren wieder abgibt. Besteht typischerweise mindestens aus Verdichter (Kompressor), Verflüssiger (Kondensator)/Gaskühler (bei CO₂), Expansionsventil und Verdampfer sowie verbindingen Rohrleitungen. |
| Kaltwasser | Wasser als Kälte träger zum Abtransport von Wärme von den Kühlstellen. |
| Kaltwassersatz | Siehe Flüssigkeitskühlsatz |
| Kompaktanlage / Kompaktgerät | Raumsparend konstruierte Anlage bei der alle Bauteile fabrikmäßig auf einer gemeinsamen Vorrichtung zusammengebaut sind, häufig als Funktionseinheit in einem Gehäuse ausgeführt, typischerweise für kompakte Flüssigkeitskühlsätze verwendet (mit höchstens 80 g Kältemittelmenge pro kW Kälteleistung). |
| kombinierte Kompakt-Anlagen, (indirekte) | Hydraulisch miteinander verbundene Kompaktanlagen, die ein Kälte trägernetz gemeinsam kühlen (mit höchstens 80 g Kältemittelmenge pro kW Kälteleistung). |
| Kältemittelnetz (direkte Kühlung) | In Kältemittelnetz wird Kältemittel von der Kältemaschine zur Kühlstelle transportiert und zurück. Der Transport des Kältemittels erfolgt typischerweise durch Verdichter. |
| Kälteträgernetz (indirekte Kühlung) | In Kälteträgernetz wird ein Kälteträger/Kühlmittel (Wasser, Sole) zur Kühlstelle und zurück transportiert. Der Transport des Kälteträgers erfolgt typischerweise durch Pumpen. |
| Kühlsolle | Sole (→) |
| Kühlsolekreislauf, Kühlmittelkreislauf | Kälteträgernetze (→) |
| Kühlstelle | Ort, an dem Wärme aufgenommen bzw. Kälte bereitgestellt wird, z. B. Luftkühler oder Verdampfer in einem Kühlraum. |
| Kühlung (Temperaturbereiche) | • Klimabetrieb (AC) \(t_N > 8 ^\circ C \)
• Normalkühlung (NK) \(t_N \approx 0 ^\circ C \pm 4 K \)
• Tiefkühlung (TK) \(t_N < -18 ^\circ C \) |
| Kühlturn (Rückkühler) | Wärmeübertrager, in dem eine Flüssigkeit, typischerweise Wasser, Wärme an die Umgebung abgibt, die sie zuvor im Verflüssiger aufgenommen hat. |
| Latentwärmespeicher | Thermischer Speicher, der Wärme aufnehmen bzw. abgeben kann, ohne dass sich die Temperatur der Speichermasse wesentlich ändert. Die Speichermasse ändert dabei die Phase (den Aggregatzustand)
Beispiel:
• (Wasser)Eisspeicher, (→) Speicher
• Phase Chance Material (PCM) |
<p>| Laufmeter der Kühlmöbel | Länge eines Kühlmöbel entlang der Displayfläche. |
| Leistungsregelung | Automatisches Regeln der Leistung nach den Erfordernissen des Kältebedarfs. |
| Leistungsaufnahme des Verdichters, (P_{\text{elektrisch}}) | Installierte Leistungsaufnahme der Verdichter / Kältemaschine bzw. Verbundanlage die zur Abdeckung des Kältebedarfs benötigt wird, maßgeblich zur Einhaltung der Leistungsgrenzen bei Flüssigkeitskühlsätzen (außer Kompaktanlagen) nach Tab. 1a, 1b dieser Richtlinie. |
| Luftkühler | Wärmeübertrager mit dem Luft gekühlt wird, kann ein Verdampfer oder ein von einem Kühlmittel durchflossener Wärmeübertrager sein. |</p>
<table>
<thead>
<tr>
<th>Medium</th>
<th>Arbeitsstoff, Arbeitsfluid, Fluid, chemische Substanz, Kältemittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht-halogeniert</td>
<td>Medien (Kältemittel), die keine Halogene enthalten (Halogene: Hauptgruppe VII im chemischen Periodensystem: Fluor, Chlor, Brom, Jod).</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Regelmäßige Datenerhebung technischer Größen.</td>
</tr>
<tr>
<td>Regenerativenergiesystem</td>
<td>Technisches System, welches die Antriebsenergie (Strom, Wärme) für die Kältemaschine auf Basis erneuerbarer Energien zur Verfügung stellt, z.B. Solar, Wind, Biomasse.</td>
</tr>
<tr>
<td>Rückkühler</td>
<td>In der Regel außen aufgestellter Kühler für einphasige Flüssigkeiten, die an anderer Stelle Wärme aufgenommen haben, z.B. einen Verflüssiger kühlen. Die Luft, die die Flüssigkeit abkühlt, wird typischerweise mittels Ventilatoren durch die Wärmeübertrager transportiert. Da Rückkühler mit Außenluft in Kontakt stehen, sind Frostschutzmaßnahmen im Wärmeträger notwendig. (→) Kühlturm</td>
</tr>
<tr>
<td>Schienenfahrzeug</td>
<td>Beispiele: ICE, Regionalzüge, Straßenbahn.</td>
</tr>
<tr>
<td>Sektorenkopplung</td>
<td>Integration verschiedener Systeme zur Bereitstellung von Antriebsenergie auf Basis Erneuerbarer Energien und Effizienztechnologien auf der Verbrauchsseite in den Bereichen Strom, Wärme, Mobilität, Industrieprozesse.</td>
</tr>
<tr>
<td>Sekundärkreislauf / Sekundärsystem</td>
<td>Kälteträgerkreislauf oder/und Wärmeträgerkreislauf.</td>
</tr>
<tr>
<td>Sicherheitsklasse von Kältemitteln (→) Kältemittel</td>
<td>Kältemittel werden nach Toxizität und Brennbarkeit in Gruppen eingeteilt, inkl. Bsp. siehe auch DIN EN 378-1:2017-03 bzw. ISO 817</td>
</tr>
<tr>
<td>A1 gering toxisch, nicht brennbar ; R-134a, R-744</td>
<td></td>
</tr>
<tr>
<td>A2L gering toxisch, schwer entzündbar; R-1234yf, R-32</td>
<td></td>
</tr>
<tr>
<td>A2 gering toxisch, gering entzündbar; R-152a</td>
<td></td>
</tr>
<tr>
<td>A3 gering toxisch, hoch entzündlich; R-290, R-600a</td>
<td></td>
</tr>
<tr>
<td>B2L erhöht toxisch, schwer entzündbar; R-717</td>
<td></td>
</tr>
<tr>
<td>B2 erhöht toxisch, gering entzündbar; R-723</td>
<td></td>
</tr>
<tr>
<td>Sole / Kühlsolle</td>
<td>Fluid, das Wärme ohne Phasenwechsel aufnimmt oder abgibt. Kühlsolle bezeichnet das Fluid auf der kalten Seite einer Kältemaschine. Wenn die Temperatur höher ist als 0 °C und keine Gefahr des Einfrierens besteht, kann Wasser verwendet werden.</td>
</tr>
<tr>
<td>Solekreislauf</td>
<td>Nimmt Wärme aus seiner Umgebung auf und führt diese über einen Wärmeübertrager dem Kälteteillonkreislauf zu.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speicherkapazität</th>
<th>Energiemenge (Wärmemenge), die vom Speichersystem maximal aufgenommen werden kann.</th>
</tr>
</thead>
</table>
| Speichersysteme (thermische Speicher) | Wärmespeicher (→)
Kältespeicher (→)
Latentwärmespeicher(→) |
| Standort | Standort einer Anlage ist definiert über
et einheitliche Adresse
- räumliche Nähe
- wirtschaftlich funktionaler Zusammenhang i.S. der Richtlinie |
| System, indirektes | System, bei dem auf mindestens einer Seite der Wärmetransport mit Hilfe eines weiteren Fluids erfolgt.
Bei der indirekten Verdampfung transportiert ein Kälteträger (Wasser, Sole, ...) die thermische Energie zwischen Verdampfer der Kälteanlage und dem Kühl er.
Bei der indirekten Verflüssigung transportiert ein Wärmeträger (Wasser, Sole, ...) die thermische Energie zwischen dem Verflüssiger der Kälteanlage und dem Rückkühler. |
<p>| System, halbsteckerfertig System, semi plug-in | Mehrere flüssigkeits gekühlte steckerfertige Geräte, die ihre Kondensationswärme über einen gemeinsamen Kreislauf mit einem Rückkühler oder Kaltwassersatz an die Umgebung abgeben (auch Waterloop-System) |
| Tiefkühlstufe | Teil einer Kälteanlage, mit der eine tiefe Temperatur (<-18 °C) erzeugt wird, z.B. Niederdruckstufe einer Booster-Kälteanlage oder Kaskade. |
| Vakuum-Eiserzeuger | Eiserzeugung mit Kältemittel Wasser, keine konventionellen Eiserzeuger. |
| Verbundene Anlage | Verbundene Anlagen weisen funktionale Schnittstellen auf Kältemittel-, Wasser-, Sole- oder Luftseite (z.B. gemeinsamer Kühlraum) auf. |</p>
<table>
<thead>
<tr>
<th>Verbundanlage</th>
<th>Mehrere auf gemeinsamem Rahmen montierte Verdichter mit gemeinsamer Saug- und Druckleitung incl. Ölmanagementsystem und Regelungstechnik der Verdichter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdichter</td>
<td>Hauptkomponente einer Kompressionskälteanlage, die das aus dem Verdampfer angesaugte gasförmige Kältemittel auf einen höheren Druck verdichtet.</td>
</tr>
<tr>
<td>Verdampfer</td>
<td>Wärmeübertrager, in dem das einströmende flüssige Kältemittel verdampft und dabei Wärme aus dem zu kührenden Bereich (z.B. Kühlraum, zu klimatisierende Zone, Abkühlung von Wasser) aufnimmt.</td>
</tr>
</tbody>
</table>
| Verdunstungskühlanlagen | Hier: indirekte adiabatische Verdunstungskühlung in einem Gerät
Ein warmer Abluftstrom wird mit Wasser befeuchtet, das verdunstet ohne von außen Wärme aufzunehmen (adiabat) und kühlt dadurch den Luftstrom ab. In einem Wärmeübertrager (Rekuperator) wird wärmeres Außenluft mit dem o. g. Luftstrom gekühlt und einem Raum zugeführt. Die Verdunstung wirkt damit indirekt auf die Zielgröße Zuluft. (→) indirekte Verdunstungskühlung (Andere Kälteerzeuger nach Tab.1c) |
| Verdunstungskühler, adiabate Rückkühler (Hybridkühler) | (→) Rückkühler, bei dem die Kühlung durch Luft und Wasser ggf. durch Verdunstung erfolgt; s.a. (→) Kühlturn / Wasserrückkühlerwerk (Komponenten und Systeme nach Tab. 1d). |
| Verflüssiger | Hauptkomponente einer Kompressionskälteanlage, die das vom Verdichter kommende Kältemittel unter hohem Druck enthält und verflüssigt. |
| Waterloop-Systeme | Mehrere flüssigkeitsgekühlte steckerfertige Geräte, die ihre Kondensationswärme über einen gemeinsamen Kreislauf mit einem Rückkühler oder Kaltwassersatz an die Umgebung abgeben (auch semi-steckerfertige Systeme) |
| Wärmepumpe | Maschine (nach dieser Richtlinie), die unter Zufuhr von Arbeit Wärme (z. B. Abwärme einer Kälteanlage) aufnimmt und zusammen mit der Antriebsenergie als Nutzwärme bei hoher Temperatur (z.B. Warmwasser) abgibt. |
| Wärmeübertrager | Apparat zur Übertragung von Wärme zwischen zwei Fluiden die typischerweise durch Wände getrennt sind (Rekuperator). |
| Wasserkühlsatz | (→) Flüssigkeitskühlsatz |
10.2. Abkürzungen

10.2.1. Bezeichnungen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC, A/C</td>
<td>Anwendung: Klimatechnik = Air-Conditioning</td>
</tr>
<tr>
<td>aVdK</td>
<td>adiabate Verdunstungskühlung</td>
</tr>
<tr>
<td>AKA</td>
<td>Absorptionskälteanlage, Adsorptionskälteanlage</td>
</tr>
<tr>
<td>AKM</td>
<td>Absorptionskältemaschine, Adsorptionskältemaschine</td>
</tr>
<tr>
<td>BHKW</td>
<td>Blockheizkraftwerk</td>
</tr>
<tr>
<td>iVdK</td>
<td>indirekte Verdunstungskühlung</td>
</tr>
<tr>
<td>KA</td>
<td>Kältetechnik</td>
</tr>
<tr>
<td>KKA</td>
<td>Kompressionskälteanlage</td>
</tr>
<tr>
<td>KKM</td>
<td>Kompressionskältemaschine</td>
</tr>
<tr>
<td>KM, R</td>
<td>Kältemittel</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung</td>
</tr>
<tr>
<td>KWKK</td>
<td>Kraft-Wärme-Kälte-Kopplung</td>
</tr>
<tr>
<td>LWS</td>
<td>Latentwärmespeicher</td>
</tr>
<tr>
<td>NK</td>
<td>Anwendung: Normalkühlung, $t_n \approx 0 ^\circ C \pm 4 ^\circ K$</td>
</tr>
<tr>
<td>SuM</td>
<td>Supermarkt</td>
</tr>
<tr>
<td>TK</td>
<td>Anwendung: Tiefkühlung, $t_n < -18 ^\circ C$</td>
</tr>
<tr>
<td>VdK</td>
<td>Verdunstungskühlung</td>
</tr>
</tbody>
</table>

10.2.2. Technische Parameter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_{innen}</td>
<td>Luftfeuchte, innen</td>
</tr>
<tr>
<td>EER</td>
<td>Leistungszahl im Kühlbetrieb (engl. energy efficiency ratio)</td>
</tr>
<tr>
<td>EER_A</td>
<td>Leistungszahl für Vollast (engl. energy efficiency ratio)</td>
</tr>
<tr>
<td>P</td>
<td>Elektr. Antriebsleistung</td>
</tr>
<tr>
<td>Q_o</td>
<td>Kälteenergie</td>
</tr>
<tr>
<td>Q_o</td>
<td>Kälteleistung</td>
</tr>
<tr>
<td>Q_C</td>
<td>Kondensatorleistung</td>
</tr>
<tr>
<td>SEER</td>
<td>Jahresarbeitszahl im Kühlbetrieb (engl. seasonal energy efficiency ratio)</td>
</tr>
</tbody>
</table>
Indizes

<table>
<thead>
<tr>
<th>Indizes</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUL</td>
<td>Außenluft</td>
</tr>
<tr>
<td>c</td>
<td>Verflüssigung, Kondensation</td>
</tr>
<tr>
<td>c1</td>
<td>Verflüssigungsbeginn</td>
</tr>
<tr>
<td>f1</td>
<td>Feuchtkugel Eintritt</td>
</tr>
<tr>
<td>KF1</td>
<td>Fluideintritt auf der kalten Seite</td>
</tr>
<tr>
<td>KF2</td>
<td>Fluidausrütt auf der kalten Seite</td>
</tr>
<tr>
<td>L1</td>
<td>Luftintritt</td>
</tr>
<tr>
<td>N</td>
<td>Nutz-, Anwendungs-, Produkttemperatur (z. B. Kühlraumtemperatur)</td>
</tr>
<tr>
<td>o</td>
<td>Verdampfung</td>
</tr>
<tr>
<td>o2</td>
<td>Verdampfungsende</td>
</tr>
<tr>
<td>WF2</td>
<td>Fluidausrütt</td>
</tr>
<tr>
<td>ZUL</td>
<td>Zuluft</td>
</tr>
</tbody>
</table>

10.2.3. Indizes

t_{Austritt}	Temperatur am Austritt
t_{c1}''	Verflüssigungstemperatur am Verflüssigereintritt (Taupunkttemperatur bei Verflüssigungsdruck)
t_{Eintritt}	Temperatur am Eintritt
t_{f1}	Feuchtkugeltemperatur der Luft am Eintritt
t_{KF1}	Fluideintrittstemperatur (Flüssigkeit oder Luft) auf der kalten Seite
t_{KF2}	Fluidausrüttstemperatur (Flüssigkeit oder Luft)
t_{L1}	Lufteintrittstemperatur
t_{N}	Temperatur, Normalkühlung
t_{o2}''	Verdampfungsende (Taupunkttemperatur bei Verdampfungsdruck)
t_{WF2}	Fluidausrüttstemperatur (Flüssigkeit oder Luft) auf der warmen Seite
ΔT_{K}	Temperaturspreizung
ΔT_{KF}	Temperaturdifferenz des Fluids
T_{AUL}	Temperatur, Außenluft
T_{innen}	Temperatur, innen
̇V	Luftvolumenstrom in m³/h
̇V₁	Volumenstrom